The generator matrix 1 0 0 0 1 1 1 2X 1 1 1 1 1 2X 1 1 0 1 1 0 1 1 1 1 X 1 1 1 0 1 1 1 1 0 1 0 0 0 1 2X+1 1 0 X 2X+2 2X+2 X+2 X 2 1 1 1 X+2 1 2X 2 0 1 2X 2 2X+2 X+1 1 2X+2 2X+1 2X+1 2X 0 0 1 0 1 1 2X+2 2X+1 X+1 2X+2 2X X+1 0 1 2 0 2X 1 X+1 X+1 2X X+2 X X+2 0 X+1 X X X+1 X X+1 1 X+1 0 0 0 1 2 0 2X+2 2X+2 2X+1 2X X+1 2X 2 X+1 0 1 2 X+2 1 X+1 2 2 1 X+2 1 X+1 2X+2 X 0 2X 1 2X X 0 0 0 0 2X 0 2X 2X X 0 X 0 2X X 2X 2X X X 2X 2X 0 0 0 X 2X 0 0 X X 0 2X X X 0 0 0 0 0 X X 0 2X 2X 2X 0 X X X 0 0 X 2X 2X 2X X 0 0 X X X 0 2X 2X X 0 2X generates a code of length 33 over Z3[X]/(X^2) who´s minimum homogenous weight is 53. Homogenous weight enumerator: w(x)=1x^0+132x^53+236x^54+552x^55+804x^56+714x^57+1398x^58+1854x^59+1652x^60+3072x^61+3510x^62+2866x^63+4602x^64+5100x^65+3948x^66+5286x^67+5286x^68+3334x^69+4530x^70+3684x^71+1902x^72+1974x^73+1224x^74+546x^75+444x^76+258x^77+70x^78+12x^79+18x^80+24x^81+12x^84+2x^87+2x^90 The gray image is a linear code over GF(3) with n=99, k=10 and d=53. This code was found by Heurico 1.16 in 19.7 seconds.